[DesireCourse.Net] Udemy - Advanced AI Deep Reinforcement Learning in Python
    
    File List
    
        
            
                
                    - 6. Deep Q-Learning/7. Deep Q-Learning in Tensorflow for Breakout.mp4  234.6 MB
 
                
                    - 6. Deep Q-Learning/8. Deep Q-Learning in Theano for Breakout.mp4  233.7 MB
 
                
                    - 9. Appendix  FAQ/2. Windows-Focused Environment Setup 2018.mp4  186.2 MB
 
                
                    - 7. A3C/5. A3C - Code pt 4.mp4  184.3 MB
 
                
                    - 8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4  97.3 MB
 
                
                    - 8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.mp4  93.4 MB
 
                
                    - 8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.mp4  87.0 MB
 
                
                    - 7. A3C/4. A3C - Code pt 3.mp4  84.5 MB
 
                
                    - 8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.mp4  81.4 MB
 
                
                    - 9. Appendix  FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp4  78.2 MB
 
                
                    - 7. A3C/1. A3C - Theory and Outline.mp4  71.8 MB
 
                
                    - 7. A3C/3. A3C - Code pt 2.mp4  57.6 MB
 
                
                    - 7. A3C/2. A3C - Code pt 1 (Warmup).mp4  50.1 MB
 
                
                    - 9. Appendix  FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4  43.9 MB
 
                
                    - 9. Appendix  FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4  39.0 MB
 
                
                    - 9. Appendix  FAQ/13. BONUS Where to get Udemy coupons and FREE deep learning material.mp4  37.8 MB
 
                
                    - 9. Appendix  FAQ/12. What order should I take your courses in (part 2).mp4  37.6 MB
 
                
                    - 9. Appendix  FAQ/11. What order should I take your courses in (part 1).mp4  29.3 MB
 
                
                    - 6. Deep Q-Learning/6. Pseudocode and Replay Memory.mp4  27.8 MB
 
                
                    - 9. Appendix  FAQ/4. How to Code by Yourself (part 1).mp4  24.5 MB
 
                
                    - 5. Policy Gradients/9. Mountain Car Continuous Theano (v2).mp4  22.2 MB
 
                
                    - 5. Policy Gradients/7. Mountain Car Continuous Tensorflow.mp4  20.1 MB
 
                
                    - 5. Policy Gradients/6. Mountain Car Continuous Theano.mp4  19.1 MB
 
                
                    - 1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.mp4  18.9 MB
 
                
                    - 5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).mp4  18.8 MB
 
                
                    - 2. Background Review/5. Review of Temporal Difference Learning.mp4  18.5 MB
 
                
                    - 9. Appendix  FAQ/6. How to Succeed in this Course (Long Version).mp4  18.3 MB
 
                
                    - 5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.mp4  18.0 MB
 
                
                    - 5. Policy Gradients/1. Policy Gradient Methods.mp4  17.9 MB
 
                
                    - 9. Appendix  FAQ/10. Is Theano Dead.mp4  17.8 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.mp4  16.5 MB
 
                
                    - 1. Introduction and Logistics/1. Introduction and Outline.mp4  15.8 MB
 
                
                    - 6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.mp4  15.0 MB
 
                
                    - 9. Appendix  FAQ/5. How to Code by Yourself (part 2).mp4  14.8 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).mp4  14.7 MB
 
                
                    - 6. Deep Q-Learning/2. Deep Q-Learning Techniques.mp4  14.4 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).mp4  13.8 MB
 
                
                    - 6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.mp4  13.8 MB
 
                
                    - 5. Policy Gradients/3. Policy Gradient in Theano for CartPole.mp4  13.4 MB
 
                
                    - 2. Background Review/2. Review of Markov Decision Processes.mp4  12.3 MB
 
                
                    - 4. TD Lambda/3. TD Lambda.mp4  11.8 MB
 
                
                    - 2. Background Review/7. Review of Deep Learning.mp4  11.0 MB
 
                
                    - 6. Deep Q-Learning/10. Deep Q-Learning Section Summary.mp4  10.4 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.mp4  10.3 MB
 
                
                    - 4. TD Lambda/2. N-Step in Code.mp4  9.5 MB
 
                
                    - 7. A3C/7. Course Summary.mp4  9.4 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).mp4  8.9 MB
 
                
                    - 7. A3C/6. A3C - Section Summary.mp4  8.9 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.mp4  8.7 MB
 
                
                    - 6. Deep Q-Learning/5. Additional Implementation Details for Atari.mp4  8.5 MB
 
                
                    - 9. Appendix  FAQ/9. Python 2 vs Python 3.mp4  7.8 MB
 
                
                    - 4. TD Lambda/4. TD Lambda in Code.mp4  7.6 MB
 
                
                    - 6. Deep Q-Learning/9. Partially Observable MDPs.mp4  7.6 MB
 
                
                    - 5. Policy Gradients/4. Continuous Action Spaces.mp4  6.6 MB
 
                
                    - 2. Background Review/3. Review of Dynamic Programming.mp4  6.5 MB
 
                
                    - 5. Policy Gradients/5. Mountain Car Continuous Specifics.mp4  6.5 MB
 
                
                    - 2. Background Review/4. Review of Monte Carlo Methods.mp4  6.2 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).mp4  6.0 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.mp4  5.9 MB
 
                
                    - 6. Deep Q-Learning/1. Deep Q-Learning Intro.mp4  5.9 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.mp4  5.8 MB
 
                
                    - 9. Appendix  FAQ/1. What is the Appendix.mp4  5.5 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.mp4  5.3 MB
 
                
                    - 1. Introduction and Logistics/2. Where to get the Code.mp4  5.2 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.mp4  5.1 MB
 
                
                    - 4. TD Lambda/1. N-Step Methods.mp4  5.0 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.mp4  4.5 MB
 
                
                    - 2. Background Review/1. Review Intro.mp4  4.2 MB
 
                
                    - 2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.mp4  3.7 MB
 
                
                    - 4. TD Lambda/5. TD Lambda Summary.mp4  3.6 MB
 
                
                    - 5. Policy Gradients/10. Policy Gradient Section Summary.mp4  3.3 MB
 
                
                    - 1. Introduction and Logistics/3. How to Succeed in this Course.mp4  3.3 MB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).mp4  3.1 MB
 
                
                    - 9. Appendix  FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt  31.8 KB
 
                
                    - 6. Deep Q-Learning/7. Deep Q-Learning in Tensorflow for Breakout.srt  28.2 KB
 
                
                    - 6. Deep Q-Learning/8. Deep Q-Learning in Theano for Breakout.srt  28.1 KB
 
                
                    - 9. Appendix  FAQ/12. What order should I take your courses in (part 2).srt  23.0 KB
 
                
                    - 9. Appendix  FAQ/4. How to Code by Yourself (part 1).srt  22.8 KB
 
                
                    - 7. A3C/5. A3C - Code pt 4.srt  21.2 KB
 
                
                    - 7. A3C/1. A3C - Theory and Outline.srt  20.3 KB
 
                
                    - 9. Appendix  FAQ/2. Windows-Focused Environment Setup 2018.srt  20.1 KB
 
                
                    - 9. Appendix  FAQ/11. What order should I take your courses in (part 1).srt  16.0 KB
 
                
                    - 5. Policy Gradients/1. Policy Gradient Methods.srt  14.8 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.srt  14.6 KB
 
                
                    - 9. Appendix  FAQ/6. How to Succeed in this Course (Long Version).srt  14.5 KB
 
                
                    - 1. Introduction and Logistics/1. Introduction and Outline.srt  14.5 KB
 
                
                    - 9. Appendix  FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt  14.5 KB
 
                
                    - 9. Appendix  FAQ/8. Proof that using Jupyter Notebook is the same as not using it.srt  14.1 KB
 
                
                    - 9. Appendix  FAQ/5. How to Code by Yourself (part 2).srt  13.3 KB
 
                
                    - 9. Appendix  FAQ/10. Is Theano Dead.srt  12.9 KB
 
                
                    - 6. Deep Q-Learning/2. Deep Q-Learning Techniques.srt  12.3 KB
 
                
                    - 5. Policy Gradients/7. Mountain Car Continuous Tensorflow.srt  10.3 KB
 
                
                    - 2. Background Review/2. Review of Markov Decision Processes.srt  10.1 KB
 
                
                    - 5. Policy Gradients/6. Mountain Car Continuous Theano.srt  9.9 KB
 
                
                    - 4. TD Lambda/3. TD Lambda.srt  9.3 KB
 
                
                    - 2. Background Review/7. Review of Deep Learning.srt  9.2 KB
 
                
                    - 7. A3C/4. A3C - Code pt 3.srt  9.0 KB
 
                
                    - 5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.srt  8.7 KB
 
                
                    - 5. Policy Gradients/9. Mountain Car Continuous Theano (v2).srt  8.3 KB
 
                
                    - 7. A3C/3. A3C - Code pt 2.srt  8.3 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).srt  8.0 KB
 
                
                    - 9. Appendix  FAQ/13. BONUS Where to get Udemy coupons and FREE deep learning material.srt  7.9 KB
 
                
                    - 6. Deep Q-Learning/6. Pseudocode and Replay Memory.srt  7.8 KB
 
                
                    - 7. A3C/2. A3C - Code pt 1 (Warmup).srt  7.8 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.srt  7.7 KB
 
                
                    - 8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.srt  7.2 KB
 
                
                    - 5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).srt  7.1 KB
 
                
                    - 6. Deep Q-Learning/5. Additional Implementation Details for Atari.srt  7.0 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.srt  6.9 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).srt  6.4 KB
 
                
                    - 9. Appendix  FAQ/9. Python 2 vs Python 3.srt  6.1 KB
 
                
                    - 6. Deep Q-Learning/10. Deep Q-Learning Section Summary.srt  6.0 KB
 
                
                    - 7. A3C/7. Course Summary.srt  6.0 KB
 
                
                    - 8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.srt  5.9 KB
 
                
                    - 2. Background Review/5. Review of Temporal Difference Learning.srt  5.9 KB
 
                
                    - 6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.srt  5.8 KB
 
                
                    - 6. Deep Q-Learning/9. Partially Observable MDPs.srt  5.8 KB
 
                
                    - 8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.srt  5.5 KB
 
                
                    - 6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.srt  5.4 KB
 
                
                    - 1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.srt  5.4 KB
 
                
                    - 2. Background Review/3. Review of Dynamic Programming.srt  5.3 KB
 
                
                    - 5. Policy Gradients/4. Continuous Action Spaces.srt  5.3 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).srt  5.2 KB
 
                
                    - 5. Policy Gradients/5. Mountain Car Continuous Specifics.srt  5.0 KB
 
                
                    - 2. Background Review/4. Review of Monte Carlo Methods.srt  5.0 KB
 
                
                    - 6. Deep Q-Learning/1. Deep Q-Learning Intro.srt  4.8 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.srt  4.8 KB
 
                
                    - 1. Introduction and Logistics/2. Where to get the Code.srt  4.6 KB
 
                
                    - 5. Policy Gradients/3. Policy Gradient in Theano for CartPole.srt  4.5 KB
 
                
                    - 4. TD Lambda/2. N-Step in Code.srt  4.2 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.srt  4.2 KB
 
                
                    - 1. Introduction and Logistics/3. How to Succeed in this Course.srt  4.0 KB
 
                
                    - 4. TD Lambda/1. N-Step Methods.srt  3.8 KB
 
                
                    - 8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.srt  3.8 KB
 
                
                    - 9. Appendix  FAQ/1. What is the Appendix.srt  3.7 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).srt  3.6 KB
 
                
                    - 2. Background Review/1. Review Intro.srt  3.5 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.srt  3.5 KB
 
                
                    - 4. TD Lambda/4. TD Lambda in Code.srt  3.3 KB
 
                
                    - 4. TD Lambda/5. TD Lambda Summary.srt  3.0 KB
 
                
                    - 2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.srt  2.8 KB
 
                
                    - 7. A3C/6. A3C - Section Summary.srt  2.6 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.srt  2.5 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).srt  2.4 KB
 
                
                    - 3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.srt  2.4 KB
 
                
                    - 5. Policy Gradients/10. Policy Gradient Section Summary.srt  1.9 KB
 
                
                    - [FreeCourseWorld.Com].url  54 bytes
 
                
                    - [DesireCourse.Net].url  51 bytes
 
                
                    - [CourseClub.Me].url  48 bytes
 
                
            
        
     
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.