[ DevCourseWeb.com ] Udemy - Data pre-processing for Machine Learning in Python
File List
- ~Get Your Files Here !/9. A complete pipeline/1. An example of a complete pipeline.mp4 121.2 MB
- ~Get Your Files Here !/3. Encoding of the categorical features/2. One-hot encoding.mp4 114.7 MB
- ~Get Your Files Here !/2. Data cleaning/6. ColumnTransformer and make_column_selector.mp4 88.4 MB
- ~Get Your Files Here !/8. Filter-based feature selection/6. Feature importance according to a model.mp4 87.4 MB
- ~Get Your Files Here !/2. Data cleaning/7. Exercises.mp4 80.7 MB
- ~Get Your Files Here !/5. Pipelines/3. Exercises.mp4 78.7 MB
- ~Get Your Files Here !/5. Pipelines/2. Pipelines and ColumnTransformer together.mp4 78.6 MB
- ~Get Your Files Here !/8. Filter-based feature selection/2. Numerical features, numerical target.mp4 77.9 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/6. Exercise.mp4 76.7 MB
- ~Get Your Files Here !/3. Encoding of the categorical features/5. Exercise.mp4 74.4 MB
- ~Get Your Files Here !/6. Scaling/2. Normalization, Standardization, Robust scaling.mp4 71.2 MB
- ~Get Your Files Here !/8. Filter-based feature selection/4. Categorical features, numerical target.mp4 71.1 MB
- ~Get Your Files Here !/7. Principal Component Analysis/2. How to perform PCA.mp4 61.8 MB
- ~Get Your Files Here !/2. Data cleaning/5. KNN blank filling.mp4 60.9 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/3. Binning.mp4 60.4 MB
- ~Get Your Files Here !/2. Data cleaning/3. Cleaning the numerical features.mp4 59.1 MB
- ~Get Your Files Here !/10. Oversampling/2. How to perform SMOTE.mp4 57.0 MB
- ~Get Your Files Here !/8. Filter-based feature selection/5. Categorical features, categorical target.mp4 56.9 MB
- ~Get Your Files Here !/8. Filter-based feature selection/9. Exercises.mp4 53.8 MB
- ~Get Your Files Here !/8. Filter-based feature selection/3. Numerical features, categorical target.mp4 52.1 MB
- ~Get Your Files Here !/6. Scaling/3. Exercise.mp4 50.6 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/2. Power Transformation.mp4 48.7 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/5. Applying an arbitrary transformation.mp4 42.1 MB
- ~Get Your Files Here !/3. Encoding of the categorical features/3. Ordinal encoding.mp4 40.0 MB
- ~Get Your Files Here !/5. Pipelines/1. Define a transformation pipeline.mp4 38.8 MB
- ~Get Your Files Here !/10. Oversampling/3. Exercise.mp4 35.5 MB
- ~Get Your Files Here !/1. Introduction/5. Jupyter notebooks.mp4 34.6 MB
- ~Get Your Files Here !/7. Principal Component Analysis/3. Exercise.mp4 32.8 MB
- ~Get Your Files Here !/8. Filter-based feature selection/1. Introduction to feature selection.mp4 28.6 MB
- ~Get Your Files Here !/2. Data cleaning/2. Selecting numerical and categorical variables.mp4 27.6 MB
- ~Get Your Files Here !/10. Oversampling/1. Introduction to SMOTE.mp4 19.6 MB
- ~Get Your Files Here !/6. Scaling/1. Introduction to scaling.mp4 19.0 MB
- ~Get Your Files Here !/7. Principal Component Analysis/1. Introduction to PCA.mp4 18.8 MB
- ~Get Your Files Here !/1. Introduction/1. Introduction to the course.mp4 17.5 MB
- ~Get Your Files Here !/2. Data cleaning/4. Cleaning the categorical features.mp4 17.0 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/4. Binarizing.mp4 11.6 MB
- ~Get Your Files Here !/1. Introduction/2. Numerical and categorical variables.mp4 11.6 MB
- ~Get Your Files Here !/4. Transformations of the numerical features/1. Introduction to transformations.mp4 10.8 MB
- ~Get Your Files Here !/3. Encoding of the categorical features/4. Label encoding of the target variable.mp4 10.1 MB
- ~Get Your Files Here !/2. Data cleaning/1. Introduction to data cleaning.mp4 9.6 MB
- ~Get Your Files Here !/3. Encoding of the categorical features/1. Introduction to the encoding of categorical variables.mp4 5.4 MB
- ~Get Your Files Here !/1. Introduction/3.2 sample_dataset.csv 97.1 KB
- ~Get Your Files Here !/8. Filter-based feature selection/4.1 Categorical features numerical target.ipynb 44.5 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/2.1 Power Transform.ipynb 43.5 KB
- ~Get Your Files Here !/8. Filter-based feature selection/5.1 Categorical features categorical target.ipynb 43.1 KB
- ~Get Your Files Here !/8. Filter-based feature selection/2.1 Numerical target numerical feature.ipynb 41.1 KB
- ~Get Your Files Here !/2. Data cleaning/4.1 Cleaning the categorical features.ipynb 34.2 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/3.1 Binning.ipynb 30.3 KB
- ~Get Your Files Here !/8. Filter-based feature selection/6.1 Feature importance according to model.ipynb 26.2 KB
- ~Get Your Files Here !/7. Principal Component Analysis/2.1 PCA.ipynb 25.3 KB
- ~Get Your Files Here !/2. Data cleaning/7.1 Exercises.ipynb 23.6 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/2. One-hot encoding.srt 19.8 KB
- ~Get Your Files Here !/9. A complete pipeline/1. An example of a complete pipeline.srt 17.9 KB
- ~Get Your Files Here !/6. Scaling/2.1 Scaling techniques.ipynb 14.2 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/4.1 Binarizer.ipynb 13.3 KB
- ~Get Your Files Here !/2. Data cleaning/6. ColumnTransformer and make_column_selector.srt 13.2 KB
- ~Get Your Files Here !/8. Filter-based feature selection/3.1 Numerical features categorical target.ipynb 13.0 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/5. Exercise.srt 12.1 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/5.1 FunctionTransformer.ipynb 11.9 KB
- ~Get Your Files Here !/6. Scaling/2. Normalization, Standardization, Robust scaling.srt 11.5 KB
- ~Get Your Files Here !/7. Principal Component Analysis/3.1 Exercises.ipynb 11.2 KB
- ~Get Your Files Here !/5. Pipelines/2. Pipelines and ColumnTransformer together.srt 11.2 KB
- ~Get Your Files Here !/9. A complete pipeline/1.1 A complete pipeline.ipynb 11.0 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/3. Binning.srt 10.9 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/2.1 One-hot encoding.ipynb 10.8 KB
- ~Get Your Files Here !/8. Filter-based feature selection/6. Feature importance according to a model.srt 10.8 KB
- ~Get Your Files Here !/5. Pipelines/3. Exercises.srt 10.6 KB
- ~Get Your Files Here !/2. Data cleaning/5. KNN blank filling.srt 10.6 KB
- ~Get Your Files Here !/2. Data cleaning/3. Cleaning the numerical features.srt 10.5 KB
- ~Get Your Files Here !/10. Oversampling/2. How to perform SMOTE.srt 10.1 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/6. Exercise.srt 10.0 KB
- ~Get Your Files Here !/8. Filter-based feature selection/2. Numerical features, numerical target.srt 9.4 KB
- ~Get Your Files Here !/2. Data cleaning/7. Exercises.srt 9.4 KB
- ~Get Your Files Here !/1. Introduction/5. Jupyter notebooks.srt 9.4 KB
- ~Get Your Files Here !/5. Pipelines/1. Define a transformation pipeline.srt 9.3 KB
- ~Get Your Files Here !/8. Filter-based feature selection/4. Categorical features, numerical target.srt 9.2 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/6.1 Exercises.ipynb 8.8 KB
- ~Get Your Files Here !/10. Oversampling/2.1 How to do SMOTE.ipynb 8.7 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/2. Power Transformation.srt 8.7 KB
- ~Get Your Files Here !/7. Principal Component Analysis/2. How to perform PCA.srt 8.6 KB
- ~Get Your Files Here !/1. Introduction/3.1 sample_dataset_bins.csv 8.5 KB
- ~Get Your Files Here !/8. Filter-based feature selection/9. Exercises.srt 8.4 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/3. Ordinal encoding.srt 7.8 KB
- ~Get Your Files Here !/2. Data cleaning/3.1 Cleaning the numerical features.ipynb 7.6 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/5. Applying an arbitrary transformation.srt 7.1 KB
- ~Get Your Files Here !/8. Filter-based feature selection/1. Introduction to feature selection.srt 7.1 KB
- ~Get Your Files Here !/2. Data cleaning/6.1 ColumnTransformer.ipynb 6.8 KB
- ~Get Your Files Here !/8. Filter-based feature selection/5. Categorical features, categorical target.srt 6.8 KB
- ~Get Your Files Here !/2. Data cleaning/5.1 Cleaning with KNN.ipynb 6.6 KB
- ~Get Your Files Here !/6. Scaling/3. Exercise.srt 6.5 KB
- ~Get Your Files Here !/5. Pipelines/3.1 Exercises.ipynb 6.2 KB
- ~Get Your Files Here !/7. Principal Component Analysis/3. Exercise.srt 5.9 KB
- ~Get Your Files Here !/8. Filter-based feature selection/3. Numerical features, categorical target.srt 5.8 KB
- ~Get Your Files Here !/10. Oversampling/3. Exercise.srt 5.6 KB
- ~Get Your Files Here !/5. Pipelines/2.1 Pipelines and ColumnTransformer together .ipynb 5.5 KB
- ~Get Your Files Here !/10. Oversampling/1. Introduction to SMOTE.srt 5.1 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/5.1 Exercises.ipynb 4.9 KB
- ~Get Your Files Here !/10. Oversampling/3.1 Exercises.ipynb 4.9 KB
- ~Get Your Files Here !/8. Filter-based feature selection/9.1 Exercises.ipynb 4.9 KB
- ~Get Your Files Here !/2. Data cleaning/2.1 Select numerical and categorical variables.ipynb 4.5 KB
- ~Get Your Files Here !/6. Scaling/3.1 Exercise.ipynb 4.5 KB
- ~Get Your Files Here !/5. Pipelines/1.1 Define a transformation pipeline.ipynb 4.2 KB
- ~Get Your Files Here !/2. Data cleaning/2. Selecting numerical and categorical variables.srt 4.0 KB
- ~Get Your Files Here !/7. Principal Component Analysis/1. Introduction to PCA.srt 4.0 KB
- ~Get Your Files Here !/2. Data cleaning/4. Cleaning the categorical features.srt 3.7 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/3.1 OrdinalEncoder.ipynb 3.6 KB
- ~Get Your Files Here !/1. Introduction/1. Introduction to the course.srt 3.4 KB
- ~Get Your Files Here !/6. Scaling/1. Introduction to scaling.srt 3.1 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/1. Introduction to transformations.srt 2.6 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/4. Label encoding of the target variable.srt 2.4 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/4. Binarizing.srt 2.4 KB
- ~Get Your Files Here !/2. Data cleaning/1. Introduction to data cleaning.srt 2.4 KB
- ~Get Your Files Here !/1. Introduction/2. Numerical and categorical variables.srt 2.3 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/4.1 LabelEncoder.ipynb 1.6 KB
- ~Get Your Files Here !/11. General guidelines/1. Practical suggestions.html 1.4 KB
- ~Get Your Files Here !/3. Encoding of the categorical features/1. Introduction to the encoding of categorical variables.srt 1.3 KB
- ~Get Your Files Here !/8. Filter-based feature selection/7. A comment on mutual information.html 1.1 KB
- ~Get Your Files Here !/4. Transformations of the numerical features/7. About power transformations.html 1.0 KB
- ~Get Your Files Here !/8. Filter-based feature selection/8. A comment on feature selection with categorical variables.html 1013 bytes
- ~Get Your Files Here !/1. Introduction/4. Required Python packages.html 919 bytes
- ~Get Your Files Here !/Bonus Resources.txt 386 bytes
- ~Get Your Files Here !/1. Introduction/3. The dataset.html 361 bytes
- Get Bonus Downloads Here.url 182 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.