Udemy - Ultimate DevOps to MLOps Bootcamp - Build ML CICD Pipelines (8.2025)
    
    File List
    
        
            
                
                    - 02. Conceptual Introduction to MLOps/3. Comparing Three Approaches to AI.mp4  350.9 MB
- 02. Conceptual Introduction to MLOps/2. Story of Evolution of MLOps, LLMOps and AgenticAIOps.mp4  308.4 MB
- 10. GitOps Based Deployments for MLLLM Apps/7. End to End CI and CD Pielines for ML App.mp4  302.9 MB
- 02. Conceptual Introduction to MLOps/5. Comparing Devops vs MLOps.mp4  287.1 MB
- 02. Conceptual Introduction to MLOps/6. Emergence of MLOps Engineer.mp4  229.5 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/9. Modular, Multi Stage MLOps CI Workflow Pipeline.mp4  152.0 MB
- 02. Conceptual Introduction to MLOps/4. MLOps Case Studies – Learning from the Pioneers.mp4  124.0 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/4. Writing an executung out first GitHub Actions Workflow.mp4  118.7 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/2. Learning Data Engineering.mp4  117.3 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/6. Writing Dockerfile to package Model with FastAPI Wrapper.mp4  116.7 MB
- 10. GitOps Based Deployments for MLLLM Apps/6. Continuous Delivery with ArgoCD Applications.mp4  115.9 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/9. Running Model Experiments to find the Best Model and Hyperparamters.mp4  106.0 MB
- 09. Monitoring and Autoscaling a ML Model/5. Adding Instrumentation for FastAPI along with Custom Dashboard.mp4  103.2 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/9. Packaging and Model Serving Infra with Docker Compose.mp4  102.7 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/7. Debugging and Fixing Image Failures, Launch and Validate FastAPI.mp4  96.5 MB
- 09. Monitoring and Autoscaling a ML Model/13. Adding a Verticle Pod Autoscaler (VPA).mp4  92.3 MB
- 09. Monitoring and Autoscaling a ML Model/10. AI Based Troubleshooting Monitoring with ChatGPT.mp4  91.1 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/6. Deploying Streamlit Frontent App with Kubernetes.mp4  89.8 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/9. Connecting Streamlit with Model using Kubernetes native DNS Based Service Discov.mp4  86.7 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/11. Summary.mp4  85.8 MB
- 05. Bonus Understanding the Core ML Algorithms/8. Boosting Algorithms (XGBoost, LightGBM etc.).mp4  84.6 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/3. Experimental Data Analysis.mp4  82.1 MB
- 03. Use Case and Environment Setup/4. Understanding End to End ML Practices and MLOps.mp4  81.3 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/6. Model Training Step with MLFlow for Tracking.mp4  79.4 MB
- 09. Monitoring and Autoscaling a ML Model/12. CPU Based Auto Scaling with KEDA.mp4  78.4 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/5. Wrapping the Model with FastAPI with Streamlit Client Apps.mp4  77.6 MB
- 09. Monitoring and Autoscaling a ML Model/4. Exploring Monitoring Metrics with Grafana and Prometheus.mp4  75.5 MB
- 09. Monitoring and Autoscaling a ML Model/11. Running Load Test and Analysing Autoscaling.mp4  75.4 MB
- 03. Use Case and Environment Setup/12. Summary.mp4  74.6 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/5. Simplest way to build a 3 Node Kubernetes Cluster with KIND.mp4  70.8 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/11. Module Summary.mp4  70.6 MB
- 03. Use Case and Environment Setup/10. Working with Jupyter Notebooks.mp4  68.4 MB
- 03. Use Case and Environment Setup/5. Environment Setup Overview.mp4  68.1 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/8. Packaging and testing Streamlit App.mp4  67.8 MB
- 03. Use Case and Environment Setup/8. Understanding the Project Directory and Scaffold.mp4  66.8 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/1. Module Intro.mp4  66.1 MB
- 03. Use Case and Environment Setup/1. Module Intro.mp4  66.0 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/1. Module Intro.mp4  65.7 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/8. Configurating Registry Token and publishing Image to DockerHub.mp4  65.2 MB
- 09. Monitoring and Autoscaling a ML Model/9. Getting started with Load Testing Model Inference.mp4  64.7 MB
- 10. GitOps Based Deployments for MLLLM Apps/8. Summary.mp4  63.8 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/8. Defining Algorithms and Hyperparameter Grids.mp4  62.3 MB
- 09. Monitoring and Autoscaling a ML Model/8. Configuring Scaled Objects with KEDA.mp4  61.3 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/5. Building New Features for House Price Predictor.mp4  59.8 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/1. Moule Intro.mp4  58.0 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/3. Understanding GitHub Actions Syntax.mp4  57.6 MB
- 09. Monitoring and Autoscaling a ML Model/3. Installing Prometheus and Grafana with Helm.mp4  57.3 MB
- 03. Use Case and Environment Setup/7. Launching MLflow for Experiemnt Tracking.mp4  57.3 MB
- 02. Conceptual Introduction to MLOps/1. What is MLOps.mp4  57.2 MB
- 10. GitOps Based Deployments for MLLLM Apps/5. Overview of Argo Application CRD.mp4  56.7 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/5. Adding Data and Feature Engineering Steps with Model Training.mp4  56.5 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/6. Preparing for Model Experimentation.mp4  56.0 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/11. Summary.mp4  54.0 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/7. Adding Image Build and Publish Step with Docker.mp4  53.4 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/2. DAGs, GitHub Actions and our MLOps CI Workflow.mp4  53.2 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/4. Building and Training Final Model with Configs from Data Scientists.mp4  52.1 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/7. Data Splitting with x_train, y_train, x_test, y_test.mp4  51.0 MB
- 05. Bonus Understanding the Core ML Algorithms/2. Linear Regression.mp4  50.3 MB
- 09. Monitoring and Autoscaling a ML Model/16. Summary.mp4  49.6 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/8. Creating Deployment Service for the Model wrapped in FastAPI.mp4  47.7 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/3. Introduction to Kubernetes for Machine Learning.mp4  47.4 MB
- 10. GitOps Based Deployments for MLLLM Apps/3. GitOps Pricinple 2 Start Revision Controling the Code.mp4  46.9 MB
- 05. Bonus Understanding the Core ML Algorithms/7. Neural Networking.mp4  45.2 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/3. Running Feature Engineering and Preprocessing Jobs.mp4  44.8 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/7. Exposing the Streamlit App with Kubernetes NodePort Service.mp4  44.4 MB
- 03. Use Case and Environment Setup/9. Setting up Python Virtual Environment with UV.mp4  42.9 MB
- 10. GitOps Based Deployments for MLLLM Apps/4. GitOps Principle 4 Setup a Agent - ArgoCD.mp4  42.9 MB
- 09. Monitoring and Autoscaling a ML Model/7. Installing KEDA and Configuring Resource Spec.mp4  42.8 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/1. Module Intro.mp4  42.0 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/12. Summary.mp4  41.5 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/4. Kubernetes Core Concepts - Pods, Deployments and Services.mp4  39.6 MB
- 05. Bonus Understanding the Core ML Algorithms/5. Random Forest.mp4  39.3 MB
- 03. Use Case and Environment Setup/6. Setting up Docker Podman with Compose.mp4  36.6 MB
- 09. Monitoring and Autoscaling a ML Model/6. Automatic Capacity Scaling Concepts.mp4  34.5 MB
- 03. Use Case and Environment Setup/2. Use Case - House Price Predictor - Regression.mp4  31.9 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/10. Easy way to Generate Kubernetes Manifets and YAML.mp4  31.7 MB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/2. Handover from Data Scientist to ML Engineer MLOps.mp4  30.4 MB
- 05. Bonus Understanding the Core ML Algorithms/9. Module Summary.mp4  29.6 MB
- 09. Monitoring and Autoscaling a ML Model/1. Module Intro.mp4  29.5 MB
- 05. Bonus Understanding the Core ML Algorithms/4. Decision Tree.mp4  28.2 MB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/4. Understaing Feature Engineering Concepts.mp4  28.2 MB
- 05. Bonus Understanding the Core ML Algorithms/3. Logistic Regression.mp4  26.6 MB
- 05. Bonus Understanding the Core ML Algorithms/6. Support Vector Machine (SVM).mp4  25.3 MB
- 10. GitOps Based Deployments for MLLLM Apps/2. GitOps Concepts.mp4  23.2 MB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/2. Designing Scalable Infrastructure for Model Inference.mp4  18.5 MB
- 05. Bonus Understanding the Core ML Algorithms/1. Module Intro.mp4  16.4 MB
- 10. GitOps Based Deployments for MLLLM Apps/1. Module Intro.mp4  14.7 MB
- 01. About this Course/1. Understand the MLOps Project you will Build in the Course.mp4  10.8 MB
- 09. Monitoring and Autoscaling a ML Model/2. Project Spec.mp4  6.7 MB
- 02. Conceptual Introduction to MLOps/2. M102-Story-of-AI-Infrastructure-Ops.pdf  4.3 MB
- 02. Conceptual Introduction to MLOps/4. M104-Case-Studies.pdf  3.6 MB
- 02. Conceptual Introduction to MLOps/3. M103-Understanding-ML-LLM-Agentic-AI.pdf  3.5 MB
- 02. Conceptual Introduction to MLOps/6. M105-The-Emergence-of-the-MLOps-Engineer.pdf  2.9 MB
- 02. Conceptual Introduction to MLOps/5. M106-MLOps-vs-DevOps-Understanding-the-Evolution.pdf  2.5 MB
- 02. Conceptual Introduction to MLOps/1. M101v2-What-is-MLOps.pdf  2.4 MB
- 07. Setting up MLOps CI Workflow with GitHub Actions/10. Lab 6 - MLOps CI PipelineWorkflow  with GitHub Actions.pdf  1.1 MB
- 09. Monitoring and Autoscaling a ML Model/14. Lab 8 - Setting up Model Monitoring.pdf  946.8 KB
- 03. Use Case and Environment Setup/11. Lab 3 - Environment Setup.pdf  261.8 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/10. Lab 5 - Containerize and Deploy the Model with Streamlit App.pdf  219.5 KB
- 09. Monitoring and Autoscaling a ML Model/15. Lab 9 - Autoscaling Models.pdf  180.6 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/10. Lab 4 - From Data to Model.pdf  146.4 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/11. Lab 7 - Deploying to Kubernetes.pdf  51.5 KB
- 02. Conceptual Introduction to MLOps/3. Comparing Three Approaches to AI.vtt  29.5 KB
- 02. Conceptual Introduction to MLOps/1. What is MLOps.vtt  28.7 KB
- 02. Conceptual Introduction to MLOps/5. Comparing Devops vs MLOps.vtt  28.5 KB
- 10. GitOps Based Deployments for MLLLM Apps/7. End to End CI and CD Pielines for ML App.vtt  27.0 KB
- 03. Use Case and Environment Setup/4. Understanding End to End ML Practices and MLOps.vtt  26.9 KB
- 02. Conceptual Introduction to MLOps/2. Story of Evolution of MLOps, LLMOps and AgenticAIOps.vtt  22.1 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/6. Writing Dockerfile to package Model with FastAPI Wrapper.vtt  21.8 KB
- 02. Conceptual Introduction to MLOps/6. Emergence of MLOps Engineer.vtt  20.2 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/9. Packaging and Model Serving Infra with Docker Compose.vtt  18.2 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/2. Learning Data Engineering.vtt  17.9 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/9. Modular, Multi Stage MLOps CI Workflow Pipeline.vtt  17.8 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/2. DAGs, GitHub Actions and our MLOps CI Workflow.vtt  17.6 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/4. Writing an executung out first GitHub Actions Workflow.vtt  16.4 KB
- 02. Conceptual Introduction to MLOps/4. MLOps Case Studies – Learning from the Pioneers.vtt  16.1 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/6. Deploying Streamlit Frontent App with Kubernetes.vtt  16.0 KB
- 10. GitOps Based Deployments for MLLLM Apps/6. Continuous Delivery with ArgoCD Applications.vtt  14.4 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/3. Introduction to Kubernetes for Machine Learning.vtt  13.9 KB
- 09. Monitoring and Autoscaling a ML Model/13. Adding a Verticle Pod Autoscaler (VPA).vtt  13.5 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/7. Debugging and Fixing Image Failures, Launch and Validate FastAPI.vtt  13.4 KB
- 09. Monitoring and Autoscaling a ML Model/5. Adding Instrumentation for FastAPI along with Custom Dashboard.vtt  13.3 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/9. Connecting Streamlit with Model using Kubernetes native DNS Based Service Discov.vtt  13.2 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/5. Simplest way to build a 3 Node Kubernetes Cluster with KIND.vtt  12.4 KB
- 09. Monitoring and Autoscaling a ML Model/12. CPU Based Auto Scaling with KEDA.vtt  12.1 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/4. Kubernetes Core Concepts - Pods, Deployments and Services.vtt  12.1 KB
- 03. Use Case and Environment Setup/5. Environment Setup Overview.vtt  11.8 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/9. Running Model Experiments to find the Best Model and Hyperparamters.vtt  11.6 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/8. Packaging and testing Streamlit App.vtt  11.4 KB
- 09. Monitoring and Autoscaling a ML Model/10. AI Based Troubleshooting Monitoring with ChatGPT.vtt  11.1 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/3. Experimental Data Analysis.vtt  10.7 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/3. Understanding GitHub Actions Syntax.vtt  10.6 KB
- 09. Monitoring and Autoscaling a ML Model/11. Running Load Test and Analysing Autoscaling.vtt  10.5 KB
- 09. Monitoring and Autoscaling a ML Model/4. Exploring Monitoring Metrics with Grafana and Prometheus.vtt  10.3 KB
- 03. Use Case and Environment Setup/8. Understanding the Project Directory and Scaffold.vtt  10.1 KB
- 05. Bonus Understanding the Core ML Algorithms/8. Boosting Algorithms (XGBoost, LightGBM etc.).vtt  10.0 KB
- 01. About this Course/1. Understand the MLOps Project you will Build in the Course.vtt  9.7 KB
- 03. Use Case and Environment Setup/2. Use Case - House Price Predictor - Regression.vtt  9.7 KB
- 03. Use Case and Environment Setup/7. Launching MLflow for Experiemnt Tracking.vtt  9.4 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/5. Wrapping the Model with FastAPI with Streamlit Client Apps.vtt  9.0 KB
- 09. Monitoring and Autoscaling a ML Model/8. Configuring Scaled Objects with KEDA.vtt  8.9 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/2. Handover from Data Scientist to ML Engineer MLOps.vtt  8.6 KB
- 03. Use Case and Environment Setup/10. Working with Jupyter Notebooks.vtt  8.5 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/8. Configurating Registry Token and publishing Image to DockerHub.vtt  8.5 KB
- 09. Monitoring and Autoscaling a ML Model/9. Getting started with Load Testing Model Inference.vtt  8.4 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/7. Exposing the Streamlit App with Kubernetes NodePort Service.vtt  8.2 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/8. Creating Deployment Service for the Model wrapped in FastAPI.vtt  8.0 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/10. Easy way to Generate Kubernetes Manifets and YAML.vtt  8.0 KB
- 09. Monitoring and Autoscaling a ML Model/3. Installing Prometheus and Grafana with Helm.vtt  7.9 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/6. Preparing for Model Experimentation.vtt  7.8 KB
- 10. GitOps Based Deployments for MLLLM Apps/3. GitOps Pricinple 2 Start Revision Controling the Code.vtt  7.7 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/4. Understaing Feature Engineering Concepts.vtt  7.7 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/6. Model Training Step with MLFlow for Tracking.vtt  7.5 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/4. Building and Training Final Model with Configs from Data Scientists.vtt  7.5 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/8. Defining Algorithms and Hyperparameter Grids.vtt  7.4 KB
- 03. Use Case and Environment Setup/9. Setting up Python Virtual Environment with UV.vtt  7.3 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/7. Adding Image Build and Publish Step with Docker.vtt  7.2 KB
- 05. Bonus Understanding the Core ML Algorithms/2. Linear Regression.vtt  6.8 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/5. Building New Features for House Price Predictor.vtt  6.7 KB
- 05. Bonus Understanding the Core ML Algorithms/7. Neural Networking.vtt  6.6 KB
- 10. GitOps Based Deployments for MLLLM Apps/5. Overview of Argo Application CRD.vtt  6.5 KB
- 05. Bonus Understanding the Core ML Algorithms/5. Random Forest.vtt  6.4 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/7. Data Splitting with x_train, y_train, x_test, y_test.vtt  6.3 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/3. Running Feature Engineering and Preprocessing Jobs.vtt  6.2 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/5. Adding Data and Feature Engineering Steps with Model Training.vtt  6.1 KB
- 10. GitOps Based Deployments for MLLLM Apps/2. GitOps Concepts.vtt  6.1 KB
- 03. Use Case and Environment Setup/6. Setting up Docker Podman with Compose.vtt  6.0 KB
- 09. Monitoring and Autoscaling a ML Model/7. Installing KEDA and Configuring Resource Spec.vtt  5.9 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/2. Designing Scalable Infrastructure for Model Inference.vtt  5.9 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/11. Summary.vtt  5.8 KB
- 05. Bonus Understanding the Core ML Algorithms/4. Decision Tree.vtt  5.5 KB
- 10. GitOps Based Deployments for MLLLM Apps/4. GitOps Principle 4 Setup a Agent - ArgoCD.vtt  5.3 KB
- 03. Use Case and Environment Setup/12. Summary.vtt  5.3 KB
- 09. Monitoring and Autoscaling a ML Model/6. Automatic Capacity Scaling Concepts.vtt  4.5 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/1. Module Intro.vtt  4.5 KB
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/11. Module Summary.vtt  4.3 KB
- 03. Use Case and Environment Setup/1. Module Intro.vtt  4.2 KB
- 05. Bonus Understanding the Core ML Algorithms/3. Logistic Regression.vtt  4.1 KB
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/1. Module Intro.vtt  3.9 KB
- 10. GitOps Based Deployments for MLLLM Apps/8. Summary.vtt  3.8 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/1. Moule Intro.vtt  3.6 KB
- 07. Setting up MLOps CI Workflow with GitHub Actions/11. Summary.vtt  3.4 KB
- 09. Monitoring and Autoscaling a ML Model/2. Project Spec.vtt  3.3 KB
- 05. Bonus Understanding the Core ML Algorithms/6. Support Vector Machine (SVM).vtt  2.9 KB
- 09. Monitoring and Autoscaling a ML Model/16. Summary.vtt  2.8 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/12. Summary.vtt  2.4 KB
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/1. Module Intro.vtt  2.3 KB
- 05. Bonus Understanding the Core ML Algorithms/9. Module Summary.vtt  1.8 KB
- 09. Monitoring and Autoscaling a ML Model/1. Module Intro.vtt  1.7 KB
- 05. Bonus Understanding the Core ML Algorithms/1. Module Intro.vtt  928 bytes
- 10. GitOps Based Deployments for MLLLM Apps/1. Module Intro.vtt  705 bytes
- 01. About this Course/2. Join RealOps Builders Community on Discord.html  274 bytes
- 03. Use Case and Environment Setup/3. Fork and Clone the Repository.html  271 bytes
- 03. Use Case and Environment Setup/11. Download the Lab Guide.html  91 bytes
- 09. Monitoring and Autoscaling a ML Model/15. Lab - Setting up ML Autoscaling.html  89 bytes
- 08. Building Scalable Prod Inference Infrastructure with Kubernetes/11. Download the Lab Guide.html  86 bytes
- 04. From Data to Models - Understanding Data Science with Feature Engineering and Ex/10. Download the Lab Guide.html  85 bytes
- 07. Setting up MLOps CI Workflow with GitHub Actions/10. Download the Lab Guide.html  85 bytes
- 09. Monitoring and Autoscaling a ML Model/14. Lab - Setting up Monitoring with Prometheus and Grafana.html  79 bytes
- 06. Packaging Model along with FastAPI Wrapper and Streamlit with Containers/10. Download the Lab Guide.html  74 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.