GetFreeCourses.Co-Udemy-Tensorflow 2.0 Deep Learning and Artificial Intelligence
    
    File List
    
        
            
                
                    - 18. Setting up your Environment (FAQ by Student Request)/2. Anaconda Environment Setup.mp4  180.9 MB
- 18. Setting up your Environment (FAQ by Student Request)/3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4  167.3 MB
- 18. Setting up your Environment (FAQ by Student Request)/1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4  150.6 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.mp4  124.0 MB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4  108.2 MB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4  105.6 MB
- 13. Advanced Tensorflow Usage/2. Tensorflow Serving pt 2.mp4  105.0 MB
- 11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.mp4  98.6 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.mp4  90.1 MB
- 10. GANs (Generative Adversarial Networks)/1. GAN Theory.mp4  87.2 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.mp4  83.0 MB
- 5. Convolutional Neural Networks/5. CNN Architecture.mp4  80.6 MB
- 4. Feedforward Artificial Neural Networks/5. Activation Functions.mp4  80.5 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).mp4  79.9 MB
- 5. Convolutional Neural Networks/1. What is Convolution (part 1).mp4  79.8 MB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4  79.7 MB
- 10. GANs (Generative Adversarial Networks)/2. GAN Code.mp4  78.3 MB
- 5. Convolutional Neural Networks/6. CNN Code Preparation.mp4  76.9 MB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. Beginner's Coding Tips.mp4  75.7 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.mp4  74.1 MB
- 1. Welcome/2. Outline.mp4  73.7 MB
- 2. Google Colab/3. Uploading your own data to Google Colab.mp4  73.6 MB
- 5. Convolutional Neural Networks/11. Improving CIFAR-10 Results.mp4  72.9 MB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code Yourself (part 1).mp4  71.8 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.mp4  71.7 MB
- 4. Feedforward Artificial Neural Networks/7. How to Represent Images.mp4  70.5 MB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Proof that using Jupyter Notebook is the same as not using it.mp4  69.4 MB
- 5. Convolutional Neural Networks/4. Convolution on Color Images.mp4  69.4 MB
- 4. Feedforward Artificial Neural Networks/10. ANN for Regression.mp4  69.3 MB
- 8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.mp4  68.7 MB
- 4. Feedforward Artificial Neural Networks/2. Beginners Rejoice The Math in This Course is Optional.mp4  68.5 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.mp4  68.0 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).mp4  67.3 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).mp4  67.1 MB
- 9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).mp4  66.5 MB
- 3. Machine Learning and Neurons/1. What is Machine Learning.mp4  65.5 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.mp4  64.6 MB
- 1. Welcome/3. Where to get the code.mp4  62.9 MB
- 11. Deep Reinforcement Learning (Theory)/11. Q-Learning.mp4  61.8 MB
- 3. Machine Learning and Neurons/2. Code Preparation (Classification Theory).mp4  59.8 MB
- 8. Recommender Systems/2. Recommender Systems with Deep Learning Code.mp4  58.8 MB
- 14. Low-Level Tensorflow/4. Build Your Own Custom Model.mp4  58.5 MB
- 3. Machine Learning and Neurons/5. Regression Notebook.mp4  57.5 MB
- 7. Natural Language Processing (NLP)/2. Code Preparation (NLP).mp4  57.0 MB
- 4. Feedforward Artificial Neural Networks/4. The Geometrical Picture.mp4  56.4 MB
- 11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning  DQN (pt 1).mp4  56.3 MB
- 14. Low-Level Tensorflow/3. Variables and Gradient Tape.mp4  56.0 MB
- 9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.mp4  55.1 MB
- 16. In-Depth Gradient Descent/5. Adam (pt 1).mp4  55.1 MB
- 3. Machine Learning and Neurons/3. Classification Notebook.mp4  54.5 MB
- 2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp4  53.8 MB
- 11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4  52.9 MB
- 16. In-Depth Gradient Descent/6. Adam (pt 2).mp4  52.8 MB
- 7. Natural Language Processing (NLP)/1. Embeddings.mp4  52.6 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.mp4  52.5 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.mp4  52.5 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.mp4  52.0 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.mp4  51.0 MB
- 4. Feedforward Artificial Neural Networks/8. Code Preparation (ANN).mp4  50.9 MB
- 7. Natural Language Processing (NLP)/4. Text Classification with LSTMs.mp4  50.7 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).mp4  50.4 MB
- 11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning  DQN (pt 2).mp4  49.6 MB
- 11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).mp4  49.3 MB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. How to Code Yourself (part 2).mp4  49.1 MB
- 3. Machine Learning and Neurons/7. How does a model learn.mp4  48.0 MB
- 4. Feedforward Artificial Neural Networks/9. ANN for Image Classification.mp4  47.7 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.mp4  46.8 MB
- 4. Feedforward Artificial Neural Networks/3. Forward Propagation.mp4  46.7 MB
- 9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).mp4  46.1 MB
- 13. Advanced Tensorflow Usage/6. Using the TPU.mp4  45.2 MB
- 13. Advanced Tensorflow Usage/4. Why is Google the King of Distributed Computing.mp4  44.9 MB
- 2. Google Colab/5. How to Succeed in this Course.mp4  43.8 MB
- 11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.mp4  43.6 MB
- 13. Advanced Tensorflow Usage/5. Training with Distributed Strategies.mp4  43.5 MB
- 11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.mp4  43.3 MB
- 5. Convolutional Neural Networks/7. CNN for Fashion MNIST.mp4  42.8 MB
- 11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4  42.7 MB
- 13. Advanced Tensorflow Usage/3. Tensorflow Lite (TFLite).mp4  42.6 MB
- 3. Machine Learning and Neurons/6. The Neuron.mp4  42.6 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/10. Help! Why is the code slower on my machine.mp4  42.5 MB
- 4. Feedforward Artificial Neural Networks/6. Multiclass Classification.mp4  41.4 MB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. Is Theano Dead.mp4  40.8 MB
- 2. Google Colab/2. Tensorflow 2.0 in Google Colab.mp4  40.7 MB
- 7. Natural Language Processing (NLP)/5. CNNs for Text.mp4  40.4 MB
- 14. Low-Level Tensorflow/2. Constants and Basic Computation.mp4  40.3 MB
- 11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.mp4  40.1 MB
- 7. Natural Language Processing (NLP)/6. Text Classification with CNNs.mp4  39.6 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.mp4  39.5 MB
- 2. Google Colab/4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4  38.9 MB
- 14. Low-Level Tensorflow/1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4  38.7 MB
- 11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.mp4  38.1 MB
- 17. Extras/1. How to Choose Hyperparameters.mp4  37.9 MB
- 21. Appendix  FAQ Finale/2. BONUS Lecture.mp4  37.8 MB
- 11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.mp4  37.7 MB
- 9. Transfer Learning for Computer Vision/3. Large Datasets and Data Generators.mp4  36.6 MB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).mp4  35.2 MB
- 5. Convolutional Neural Networks/9. Data Augmentation.mp4  35.0 MB
- 16. In-Depth Gradient Descent/1. Gradient Descent.mp4  34.9 MB
- 16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp4  34.9 MB
- 1. Welcome/1. Introduction.mp4  34.8 MB
- 16. In-Depth Gradient Descent/3. Momentum.mp4  34.3 MB
- 3. Machine Learning and Neurons/8. Making Predictions.mp4  33.9 MB
- 15. In-Depth Loss Functions/1. Mean Squared Error.mp4  33.8 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).mp4  33.0 MB
- 11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.mp4  31.7 MB
- 15. In-Depth Loss Functions/3. Categorical Cross Entropy.mp4  31.7 MB
- 9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4  31.6 MB
- 4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp4  29.8 MB
- 3. Machine Learning and Neurons/9. Saving and Loading a Model.mp4  29.7 MB
- 5. Convolutional Neural Networks/8. CNN for CIFAR-10.mp4  29.7 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).mp4  29.1 MB
- 7. Natural Language Processing (NLP)/3. Text Preprocessing.mp4  28.8 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/18. Other Ways to Forecast.mp4  28.3 MB
- 13. Advanced Tensorflow Usage/1. What is a Web Service (Tensorflow Serving pt 1).mp4  27.8 MB
- 5. Convolutional Neural Networks/3. What is Convolution (part 3).mp4  27.6 MB
- 3. Machine Learning and Neurons/4. Code Preparation (Regression Theory).mp4  27.3 MB
- 3. Machine Learning and Neurons/11. Suggestion Box.mp4  27.1 MB
- 3. Machine Learning and Neurons/10. Why Keras.mp4  26.5 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.mp4  26.0 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.mp4  26.0 MB
- 17. Extras/2. Where Are The Exercises.mp4  26.0 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.mp4  24.0 MB
- 15. In-Depth Loss Functions/2. Binary Cross Entropy.mp4  23.7 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).mp4  23.3 MB
- 16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp4  23.0 MB
- 5. Convolutional Neural Networks/2. What is Convolution (part 2).mp4  22.3 MB
- 11. Deep Reinforcement Learning (Theory)/5. The Return.mp4  21.1 MB
- 5. Convolutional Neural Networks/10. Batch Normalization.mp4  21.1 MB
- 9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.mp4  20.6 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.mp4  18.4 MB
- 12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.mp4  16.6 MB
- 21. Appendix  FAQ Finale/1. What is the Appendix.mp4  16.4 MB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.mp4  16.2 MB
- 18. Setting up your Environment (FAQ by Student Request)/3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.srt  32.0 KB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt  31.6 KB
- 5. Convolutional Neural Networks/5. CNN Architecture.srt  27.9 KB
- 11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.srt  26.2 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.srt  25.6 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.srt  24.0 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.srt  23.1 KB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt  23.0 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).srt  22.8 KB
- 4. Feedforward Artificial Neural Networks/5. Activation Functions.srt  22.6 KB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code Yourself (part 1).srt  22.1 KB
- 10. GANs (Generative Adversarial Networks)/1. GAN Theory.srt  20.7 KB
- 5. Convolutional Neural Networks/4. Convolution on Color Images.srt  20.6 KB
- 13. Advanced Tensorflow Usage/2. Tensorflow Serving pt 2.srt  20.4 KB
- 3. Machine Learning and Neurons/2. Code Preparation (Classification Theory).srt  20.3 KB
- 5. Convolutional Neural Networks/1. What is Convolution (part 1).srt  20.2 KB
- 18. Setting up your Environment (FAQ by Student Request)/2. Anaconda Environment Setup.srt  20.0 KB
- 5. Convolutional Neural Networks/6. CNN Code Preparation.srt  19.6 KB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. Beginner's Coding Tips.srt  19.0 KB
- 3. Machine Learning and Neurons/1. What is Machine Learning.srt  18.4 KB
- 11. Deep Reinforcement Learning (Theory)/11. Q-Learning.srt  17.9 KB
- 8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.srt  17.4 KB
- 1. Welcome/2. Outline.srt  17.1 KB
- 4. Feedforward Artificial Neural Networks/2. Beginners Rejoice The Math in This Course is Optional.srt  17.0 KB
- 7. Natural Language Processing (NLP)/2. Code Preparation (NLP).srt  16.8 KB
- 16. In-Depth Gradient Descent/5. Adam (pt 1).srt  16.7 KB
- 11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning  DQN (pt 1).srt  16.4 KB
- 4. Feedforward Artificial Neural Networks/8. Code Preparation (ANN).srt  16.3 KB
- 7. Natural Language Processing (NLP)/1. Embeddings.srt  16.2 KB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt  16.1 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).srt  15.7 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.srt  15.7 KB
- 4. Feedforward Artificial Neural Networks/7. How to Represent Images.srt  15.6 KB
- 1. Welcome/3. Where to get the code.srt  15.4 KB
- 16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.srt  15.2 KB
- 11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt  14.9 KB
- 10. GANs (Generative Adversarial Networks)/2. GAN Code.srt  14.9 KB
- 18. Setting up your Environment (FAQ by Student Request)/1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt  14.7 KB
- 20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).srt  14.6 KB
- 16. In-Depth Gradient Descent/6. Adam (pt 2).srt  14.5 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).srt  14.4 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).srt  14.3 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.srt  14.2 KB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Proof that using Jupyter Notebook is the same as not using it.srt  14.2 KB
- 2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.srt  14.1 KB
- 3. Machine Learning and Neurons/7. How does a model learn.srt  14.0 KB
- 9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).srt  13.8 KB
- 14. Low-Level Tensorflow/3. Variables and Gradient Tape.srt  13.6 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.srt  13.3 KB
- 14. Low-Level Tensorflow/4. Build Your Own Custom Model.srt  13.3 KB
- 11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning  DQN (pt 2).srt  13.2 KB
- 5. Convolutional Neural Networks/11. Improving CIFAR-10 Results.srt  13.2 KB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. How to Code Yourself (part 2).srt  13.0 KB
- 4. Feedforward Artificial Neural Networks/10. ANN for Regression.srt  12.8 KB
- 11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).srt  12.7 KB
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. Is Theano Dead.srt  12.6 KB
- 11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.srt  12.5 KB
- 3. Machine Learning and Neurons/6. The Neuron.srt  12.5 KB
- 11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt  12.4 KB
- 4. Feedforward Artificial Neural Networks/3. Forward Propagation.srt  12.2 KB
- 14. Low-Level Tensorflow/1. Differences Between Tensorflow 1.x and Tensorflow 2.x.srt  12.2 KB
- 3. Machine Learning and Neurons/5. Regression Notebook.srt  12.1 KB
- 2. Google Colab/3. Uploading your own data to Google Colab.srt  12.0 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.srt  11.8 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/10. Help! Why is the code slower on my machine.srt  11.7 KB
- 8. Recommender Systems/2. Recommender Systems with Deep Learning Code.srt  11.7 KB
- 2. Google Colab/4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.srt  11.5 KB
- 4. Feedforward Artificial Neural Networks/4. The Geometrical Picture.srt  11.5 KB
- 11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.srt  11.3 KB
- 13. Advanced Tensorflow Usage/4. Why is Google the King of Distributed Computing.srt  11.3 KB
- 5. Convolutional Neural Networks/9. Data Augmentation.srt  11.2 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.srt  11.2 KB
- 15. In-Depth Loss Functions/1. Mean Squared Error.srt  11.2 KB
- 13. Advanced Tensorflow Usage/3. Tensorflow Lite (TFLite).srt  11.0 KB
- 4. Feedforward Artificial Neural Networks/6. Multiclass Classification.srt  11.0 KB
- 9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.srt  10.7 KB
- 9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).srt  10.4 KB
- 7. Natural Language Processing (NLP)/5. CNNs for Text.srt  10.1 KB
- 4. Feedforward Artificial Neural Networks/9. ANN for Image Classification.srt  9.9 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.srt  9.9 KB
- 7. Natural Language Processing (NLP)/4. Text Classification with LSTMs.srt  9.8 KB
- 16. In-Depth Gradient Descent/1. Gradient Descent.srt  9.8 KB
- 14. Low-Level Tensorflow/2. Constants and Basic Computation.srt  9.6 KB
- 15. In-Depth Loss Functions/3. Categorical Cross Entropy.srt  9.6 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.srt  9.6 KB
- 2. Google Colab/2. Tensorflow 2.0 in Google Colab.srt  9.5 KB
- 3. Machine Learning and Neurons/3. Classification Notebook.srt  9.4 KB
- 3. Machine Learning and Neurons/4. Code Preparation (Regression Theory).srt  9.1 KB
- 11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.srt  8.9 KB
- 9. Transfer Learning for Computer Vision/3. Large Datasets and Data Generators.srt  8.8 KB
- 17. Extras/1. How to Choose Hyperparameters.srt  8.7 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.srt  8.6 KB
- 11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.srt  8.6 KB
- 13. Advanced Tensorflow Usage/5. Training with Distributed Strategies.srt  8.5 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.srt  8.4 KB
- 2. Google Colab/5. How to Succeed in this Course.srt  8.3 KB
- 17. Extras/3. Links to TF2.0 Notebooks.html  8.1 KB
- 5. Convolutional Neural Networks/3. What is Convolution (part 3).srt  8.0 KB
- 3. Machine Learning and Neurons/8. Making Predictions.srt  8.0 KB
- 5. Convolutional Neural Networks/7. CNN for Fashion MNIST.srt  8.0 KB
- 4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.srt  7.9 KB
- 21. Appendix  FAQ Finale/2. BONUS Lecture.srt  7.9 KB
- 16. In-Depth Gradient Descent/3. Momentum.srt  7.8 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.srt  7.8 KB
- 13. Advanced Tensorflow Usage/1. What is a Web Service (Tensorflow Serving pt 1).srt  7.7 KB
- 11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.srt  7.6 KB
- 11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.srt  7.5 KB
- 9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).srt  7.3 KB
- 15. In-Depth Loss Functions/2. Binary Cross Entropy.srt  7.3 KB
- 5. Convolutional Neural Networks/2. What is Convolution (part 2).srt  7.2 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.srt  7.2 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/18. Other Ways to Forecast.srt  7.2 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.srt  7.1 KB
- 13. Advanced Tensorflow Usage/6. Using the TPU.srt  7.0 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.srt  6.9 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.srt  6.8 KB
- 7. Natural Language Processing (NLP)/6. Text Classification with CNNs.srt  6.6 KB
- 5. Convolutional Neural Networks/10. Batch Normalization.srt  6.5 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).srt  6.5 KB
- 11. Deep Reinforcement Learning (Theory)/5. The Return.srt  6.3 KB
- 7. Natural Language Processing (NLP)/3. Text Preprocessing.srt  6.2 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).srt  6.0 KB
- 9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.srt  6.0 KB
- 3. Machine Learning and Neurons/10. Why Keras.srt  5.8 KB
- 1. Welcome/1. Introduction.srt  5.7 KB
- 17. Extras/2. Where Are The Exercises.srt  5.4 KB
- 16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.srt  5.4 KB
- 5. Convolutional Neural Networks/8. CNN for CIFAR-10.srt  5.4 KB
- 3. Machine Learning and Neurons/9. Saving and Loading a Model.srt  4.9 KB
- 3. Machine Learning and Neurons/11. Suggestion Box.srt  4.7 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.srt  4.6 KB
- 12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.srt  4.4 KB
- 6. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).srt  4.2 KB
- 21. Appendix  FAQ Finale/1. What is the Appendix.srt  3.7 KB
- 13. Advanced Tensorflow Usage/How you can help GetFreeCourses.Co.txt  182 bytes
- 5. Convolutional Neural Networks/How you can help GetFreeCourses.Co.txt  182 bytes
- How you can help GetFreeCourses.Co.txt  182 bytes
- 1. Welcome/3.1 Colab Notebooks.html  157 bytes
- 1. Welcome/3.2 Github Link.html  120 bytes
- 13. Advanced Tensorflow Usage/GetFreeCourses.Co.url  116 bytes
- 19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/GetFreeCourses.Co.url  116 bytes
- 5. Convolutional Neural Networks/GetFreeCourses.Co.url  116 bytes
- Download Paid Udemy Courses For Free.url  116 bytes
- GetFreeCourses.Co.url  116 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.