[DesireCourse.Net] Udemy - Deep Learning with TensorFlow 2.0 [2020]
    
    File List
    
        
            
                
                    - 14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4  144.3 MB
- 1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4  105.8 MB
- 13. Business case/4. Preprocessing the data.mp4  84.3 MB
- 13. Business case/1. Exploring the dataset and identifying predictors.mp4  66.3 MB
- 13. Business case/9. Setting an early stopping mechanism.mp4  49.8 MB
- 14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4  49.8 MB
- 14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4  49.4 MB
- 12. The MNIST example/6. Preprocess the data - shuffle and batch the data.mp4  41.6 MB
- 12. The MNIST example/10. Learning.mp4  41.0 MB
- 2. Introduction to neural networks/24. N-parameter gradient descent.mp4  39.4 MB
- 3. Setting up the working environment/9. Installing TensorFlow 2.mp4  38.7 MB
- 2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4  38.3 MB
- 14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4  38.1 MB
- 5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4  34.7 MB
- 14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4  33.8 MB
- 14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4  33.6 MB
- 5. TensorFlow - An introduction/1. TensorFlow outline.mp4  33.5 MB
- 14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4  32.6 MB
- 3. Setting up the working environment/2. Why Python and why Jupyter.mp4  32.1 MB
- 13. Business case/8. Learning and interpreting the result.mp4  31.2 MB
- 13. Business case/3. Balancing the dataset.mp4  30.4 MB
- 5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.mp4  30.3 MB
- 12. The MNIST example/13. Testing the model.mp4  29.5 MB
- 12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.mp4  29.1 MB
- 3. Setting up the working environment/4. Installing Anaconda.mp4  28.4 MB
- 12. The MNIST example/8. Outline the model.mp4  28.3 MB
- 14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4  26.7 MB
- 14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4  24.0 MB
- 5. TensorFlow - An introduction/7. Cutomizing your model.mp4  22.9 MB
- 14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4  22.5 MB
- 5. TensorFlow - An introduction/2. TensorFlow 2 intro.mp4  22.0 MB
- 4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4  20.8 MB
- 3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4  18.8 MB
- 12. The MNIST example/2. How to tackle the MNIST.mp4  18.7 MB
- 2. Introduction to neural networks/22. One parameter gradient descent.mp4  17.8 MB
- 13. Business case/6. Load the preprocessed data.mp4  17.6 MB
- 5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.mp4  16.4 MB
- 1. Welcome! Course introduction/2. What does the course cover.mp4  16.4 MB
- 12. The MNIST example/3. Importing the relevant packages and load the data.mp4  16.3 MB
- 15. Conclusion/1. See how much you have learned.mp4  14.0 MB
- 12. The MNIST example/9. Select the loss and the optimizer.mp4  13.9 MB
- 2. Introduction to neural networks/1. Introduction to neural networks.mp4  13.6 MB
- 6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4  13.4 MB
- 12. The MNIST example/1. The dataset.mp4  13.4 MB
- 2. Introduction to neural networks/5. Types of machine learning.mp4  12.2 MB
- 2. Introduction to neural networks/20. Cross-entropy loss.mp4  11.3 MB
- 14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4  11.2 MB
- 6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4  11.1 MB
- 8. Overfitting/1. Underfitting and overfitting.mp4  11.0 MB
- 15. Conclusion/3. An overview of CNNs.mp4  10.9 MB
- 13. Business case/11. Testing the model.mp4  10.8 MB
- 4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4  10.7 MB
- 10. Gradient descent and learning rates/4. Learning rate schedules.mp4  10.3 MB
- 4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4  9.8 MB
- 8. Overfitting/6. Early stopping.mp4  9.4 MB
- 10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4  9.4 MB
- 8. Overfitting/3. Training and validation.mp4  9.2 MB
- 2. Introduction to neural networks/7. The linear model.mp4  9.1 MB
- 6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4  9.0 MB
- 10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4  8.9 MB
- 2. Introduction to neural networks/3. Training the model.mp4  8.8 MB
- 6. Going deeper Introduction to deep neural networks/5. Activation functions.mp4  8.7 MB
- 3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4  8.7 MB
- 11. Preprocessing/1. Preprocessing introduction.mp4  8.4 MB
- 11. Preprocessing/3. Standardization.mp4  8.3 MB
- 9. Initialization/1. Initialization - Introduction.mp4  8.0 MB
- 15. Conclusion/6. An overview of non-NN approaches.mp4  7.8 MB
- 10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4  7.8 MB
- 2. Introduction to neural networks/10. The linear model. Multiple inputs.mp4  7.5 MB
- 8. Overfitting/4. Training, validation, and test.mp4  7.4 MB
- 6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4  7.4 MB
- 13. Business case/2. Outlining the business case solution.mp4  7.3 MB
- 2. Introduction to neural networks/18. L2-norm loss.mp4  7.3 MB
- 8. Overfitting/5. N-fold cross validation.mp4  7.0 MB
- 6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4  6.8 MB
- 8. Overfitting/2. Underfitting and overfitting - classification.mp4  6.8 MB
- 5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.mp4  6.8 MB
- 6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4  6.7 MB
- 4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4  6.5 MB
- 2. Introduction to neural networks/14. Graphical representation.mp4  6.4 MB
- 15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4  6.3 MB
- 11. Preprocessing/5. One-hot and binary encoding.mp4  6.2 MB
- 10. Gradient descent and learning rates/3. Momentum.mp4  6.1 MB
- 11. Preprocessing/4. Dealing with categorical data.mp4  6.1 MB
- 3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4  6.0 MB
- 9. Initialization/3. Xavier initialization.mp4  5.8 MB
- 2. Introduction to neural networks/16. The objective function.mp4  5.7 MB
- 9. Initialization/2. Types of simple initializations.mp4  5.6 MB
- 15. Conclusion/5. An overview of RNNs.mp4  4.9 MB
- 6. Going deeper Introduction to deep neural networks/1. Layers.mp4  4.7 MB
- 10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4  4.3 MB
- 11. Preprocessing/2. Basic preprocessing.mp4  3.7 MB
- 10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4  3.1 MB
- 6. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf  936.4 KB
- 6. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf  936.4 KB
- 2. Introduction to neural networks/1.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/10.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/12.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/14.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/16.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/18.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/20.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/22.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/24.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/3.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/5.1 Course Notes - Section 2.pdf  927.7 KB
- 2. Introduction to neural networks/7.1 Course Notes - Section 2.pdf  927.7 KB
- 13. Business case/1.1 Audiobooks_data.csv  625.2 KB
- 13. Business case/4.1 Audiobooks_data.csv  625.2 KB
- 13. Business case/5.2 Audiobooks_data.csv  625.2 KB
- 3. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf  619.2 KB
- 7. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf  182.4 KB
- 2. Introduction to neural networks/22.2 GD-function-example.xlsx  42.3 KB
- 13. Business case/4. Preprocessing the data.srt  12.3 KB
- 14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.srt  11.8 KB
- 4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.srt  10.9 KB
- 13. Business case/1. Exploring the dataset and identifying predictors.srt  10.7 KB
- 1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.srt  10.1 KB
- 14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.srt  9.5 KB
- 12. The MNIST example/6. Preprocess the data - shuffle and batch the data.srt  9.3 KB
- 2. Introduction to neural networks/22. One parameter gradient descent.srt  8.5 KB
- 12. The MNIST example/10. Learning.srt  7.9 KB
- 5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.srt  7.8 KB
- 13. Business case/9. Setting an early stopping mechanism.srt  7.8 KB
- 2. Introduction to neural networks/24. N-parameter gradient descent.srt  7.5 KB
- 12. The MNIST example/8. Outline the model.srt  7.2 KB
- 8. Overfitting/6. Early stopping.srt  6.9 KB
- 4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.srt  6.8 KB
- 3. Setting up the working environment/6. The Jupyter dashboard - part 2.srt  6.8 KB
- 6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.srt  6.7 KB
- 15. Conclusion/3. An overview of CNNs.srt  6.5 KB
- 3. Setting up the working environment/9. Installing TensorFlow 2.srt  6.4 KB
- 3. Setting up the working environment/2. Why Python and why Jupyter.srt  6.3 KB
- 12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.srt  6.3 KB
- 13. Business case/8. Learning and interpreting the result.srt  6.3 KB
- 1. Welcome! Course introduction/2. What does the course cover.srt  6.2 KB
- 5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.srt  6.2 KB
- 14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.srt  6.1 KB
- 12. The MNIST example/13. Testing the model.srt  6.0 KB
- 10. Gradient descent and learning rates/4. Learning rate schedules.srt  6.0 KB
- 11. Preprocessing/3. Standardization.srt  6.0 KB
- 2. Introduction to neural networks/1. Introduction to neural networks.srt  5.9 KB
- 8. Overfitting/1. Underfitting and overfitting.srt  5.6 KB
- 2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.srt  5.5 KB
- 14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.srt  5.4 KB
- 2. Introduction to neural networks/20. Cross-entropy loss.srt  5.3 KB
- 2. Introduction to neural networks/5. Types of machine learning.srt  5.3 KB
- 5. TensorFlow - An introduction/1. TensorFlow outline.srt  5.2 KB
- 10. Gradient descent and learning rates/6. Adaptive learning rate schedules.srt  5.2 KB
- 15. Conclusion/1. See how much you have learned.srt  5.2 KB
- 6. Going deeper Introduction to deep neural networks/5. Activation functions.srt  5.2 KB
- 15. Conclusion/6. An overview of non-NN approaches.srt  5.2 KB
- 10. Gradient descent and learning rates/1. Stochastic gradient descent.srt  4.9 KB
- 8. Overfitting/3. Training and validation.srt  4.9 KB
- 11. Preprocessing/5. One-hot and binary encoding.srt  4.8 KB
- 13. Business case/6. Load the preprocessed data.srt  4.7 KB
- 3. Setting up the working environment/4. Installing Anaconda.srt  4.6 KB
- 4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.srt  4.5 KB
- 13. Business case/3. Balancing the dataset.srt  4.5 KB
- 4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.srt  4.4 KB
- 6. Going deeper Introduction to deep neural networks/7. Backpropagation.srt  4.4 KB
- 14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.srt  4.3 KB
- 6. Going deeper Introduction to deep neural networks/6. Softmax activation.srt  4.3 KB
- 2. Introduction to neural networks/3. Training the model.srt  4.3 KB
- 14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.srt  4.3 KB
- 8. Overfitting/5. N-fold cross validation.srt  4.2 KB
- 5. TensorFlow - An introduction/7. Cutomizing your model.srt  4.1 KB
- 14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.srt  4.1 KB
- 14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.srt  4.0 KB
- 6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.srt  4.0 KB
- 2. Introduction to neural networks/7. The linear model.srt  3.9 KB
- 11. Preprocessing/1. Preprocessing introduction.srt  3.9 KB
- 6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.srt  3.8 KB
- 14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.srt  3.8 KB
- 9. Initialization/3. Xavier initialization.srt  3.7 KB
- 9. Initialization/2. Types of simple initializations.srt  3.7 KB
- 5. TensorFlow - An introduction/2. TensorFlow 2 intro.srt  3.6 KB
- 15. Conclusion/5. An overview of RNNs.srt  3.6 KB
- 14. Appendix Linear Algebra Fundamentals/5. Tensors.srt  3.6 KB
- 12. The MNIST example/1. The dataset.srt  3.6 KB
- 8. Overfitting/4. Training, validation, and test.srt  3.6 KB
- 9. Initialization/1. Initialization - Introduction.srt  3.5 KB
- 10. Gradient descent and learning rates/3. Momentum.srt  3.5 KB
- 12. The MNIST example/2. How to tackle the MNIST.srt  3.5 KB
- 5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.srt  3.5 KB
- 10. Gradient descent and learning rates/7. Adaptive moment estimation.srt  3.3 KB
- 6. Going deeper Introduction to deep neural networks/2. What is a deep net.srt  3.3 KB
- 3. Setting up the working environment/5. The Jupyter dashboard - part 1.srt  3.1 KB
- 2. Introduction to neural networks/10. The linear model. Multiple inputs.srt  3.1 KB
- 12. The MNIST example/3. Importing the relevant packages and load the data.srt  3.1 KB
- 12. The MNIST example/9. Select the loss and the optimizer.srt  3.0 KB
- 10. Gradient descent and learning rates/2. Gradient descent pitfalls.srt  2.8 KB
- 2. Introduction to neural networks/18. L2-norm loss.srt  2.8 KB
- 11. Preprocessing/4. Dealing with categorical data.srt  2.8 KB
- 8. Overfitting/2. Underfitting and overfitting - classification.srt  2.7 KB
- 2. Introduction to neural networks/14. Graphical representation.srt  2.7 KB
- 14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.srt  2.6 KB
- 15. Conclusion/2. What’s further out there in the machine and deep learning world.srt  2.5 KB
- 16. Bonus lecture/1. Bonus lecture Next steps.html  2.5 KB
- 6. Going deeper Introduction to deep neural networks/1. Layers.srt  2.4 KB
- 10. Gradient descent and learning rates/5. Learning rate schedules. A picture.srt  2.2 KB
- 12. The MNIST example/12. MNIST - solutions.html  2.1 KB
- 13. Business case/11. Testing the model.srt  2.0 KB
- 2. Introduction to neural networks/16. The objective function.srt  2.0 KB
- 13. Business case/2. Outlining the business case solution.srt  2.0 KB
- 12. The MNIST example/11. MNIST - exercises.html  2.0 KB
- 11. Preprocessing/2. Basic preprocessing.srt  1.7 KB
- 4. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html  1.6 KB
- 3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.srt  1.4 KB
- 5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.srt  1.4 KB
- 15. Conclusion/4. How DeepMind uses deep learning.html  1.4 KB
- 5. TensorFlow - An introduction/8. Minimal example with TensorFlow - Exercises.html  1.4 KB
- 2. Introduction to neural networks/9. Need Help with Linear Algebra.html  829 bytes
- 1. Welcome! Course introduction/4. Download All Resources and Important FAQ.html  720 bytes
- 7. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html  539 bytes
- 13. Business case/12. Final exercise.html  445 bytes
- 13. Business case/5. Preprocessing exercise.html  404 bytes
- 3. Setting up the working environment/7. Jupyter Shortcuts.html  332 bytes
- 3. Setting up the working environment/11. Installing packages - solution.html  267 bytes
- 14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html  220 bytes
- 3. Setting up the working environment/10. Installing packages - exercise.html  198 bytes
- 13. Business case/10. Setting an early stopping mechanism - Exercise.html  191 bytes
- 14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html  181 bytes
- 14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html  178 bytes
- 12. The MNIST example/12.3 5. TensorFlow MNIST - Exercise 5 Solution.html  172 bytes
- 12. The MNIST example/12.8 4. TensorFlow MNIST - Exercise 4 Solution.html  172 bytes
- 13. Business case/7.1 TensorFlow Business Case - Machine Learning - Part 1.html  172 bytes
- 13. Business case/8.1 TensorFlow Business Case - Machine Learning - Part 2.html  172 bytes
- 13. Business case/9.1 TensorFlow Business Case - Machine Learning - Part 3.html  172 bytes
- 14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html  171 bytes
- 1. Welcome! Course introduction/3. What does the course cover - Quiz.html  168 bytes
- 2. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html  168 bytes
- 2. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html  168 bytes
- 2. Introduction to neural networks/15. Graphical representation - Quiz.html  168 bytes
- 2. Introduction to neural networks/17. The objective function - Quiz.html  168 bytes
- 2. Introduction to neural networks/19. L2-norm loss - Quiz.html  168 bytes
- 2. Introduction to neural networks/2. Introduction to neural networks - Quiz.html  168 bytes
- 2. Introduction to neural networks/21. Cross-entropy loss - Quiz.html  168 bytes
- 2. Introduction to neural networks/23. One parameter gradient descent - Quiz.html  168 bytes
- 2. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html  168 bytes
- 2. Introduction to neural networks/4. Training the model - Quiz.html  168 bytes
- 2. Introduction to neural networks/6. Types of machine learning - Quiz.html  168 bytes
- 2. Introduction to neural networks/8. The linear model - Quiz.html  168 bytes
- 3. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html  168 bytes
- 3. Setting up the working environment/8. The Jupyter dashboard - Quiz.html  168 bytes
- 13. Business case/5.3 TensorFlow Business Case - Preprocessing Exercise Solution.html  167 bytes
- 14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html  167 bytes
- 13. Business case/11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html  166 bytes
- 13. Business case/12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html  166 bytes
- 12. The MNIST example/12.1 8. TensorFlow MNIST - Exercise 8 Solution.html  165 bytes
- 12. The MNIST example/12.4 9. TensorFlow MNIST - Exercise 9 Solution.html  165 bytes
- 13. Business case/4.2 TensorFlow Business Case - Preprocessing with Comments.html  163 bytes
- 5. TensorFlow - An introduction/7.2 TensorFlow Minimal Example - Complete Code with Comments.html  163 bytes
- 12. The MNIST example/12.5 6. TensorFlow MNIST - Exercise 6 Solution.html  162 bytes
- 12. The MNIST example/12.6 7. TensorFlow MNIST - Exercise 7 Solution.html  162 bytes
- 5. TensorFlow - An introduction/8.2 TensorFlow Minimal Example - Exercise 2_1 - Solution.html  162 bytes
- 5. TensorFlow - An introduction/8.5 TensorFlow Minimal Example - Exercise 2_2 - Solution.html  162 bytes
- 12. The MNIST example/12.7 3. TensorFlow MNIST - Exercise 3 Solution.html  160 bytes
- 5. TensorFlow - An introduction/8.1 TensorFlow Minimal Example - Exercise 1 - Solution.html  160 bytes
- 5. TensorFlow - An introduction/8.3 TensorFlow Minimal Example - Exercise 3 - Solution.html  160 bytes
- 13. Business case/5.1 TensorFlow Business Case - Preprocessing Exercise.html  158 bytes
- 12. The MNIST example/12.10 10. TensorFlow MNIST - Exercise 10 Solution.html  157 bytes
- 14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html  154 bytes
- 4. Minimal example - your first machine learning algorithm/5.1 Minimal_example_Exercise_3.b. Solution.html  154 bytes
- 4. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_3.d. Solution.html  154 bytes
- 4. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.a. Solution.html  154 bytes
- 4. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_3.c. Solution.html  154 bytes
- 5. TensorFlow - An introduction/8.4 TensorFlow Minimal Example - All Exercises.html  154 bytes
- 12. The MNIST example/13.1 TensorFlow MNIST - Complete Code with Comments.html  153 bytes
- 12. The MNIST example/10.1 TensorFlow MNIST - Part 6 with comments.html  150 bytes
- 12. The MNIST example/12.2 1. TensorFlow MNIST - Exercise 1 Solution.html  150 bytes
- 12. The MNIST example/12.9 2. TensorFlow MNIST - Exercise 2 Solution.html  150 bytes
- 12. The MNIST example/3.1 TensorFlow MNIST - Part 1 with comments.html  150 bytes
- 12. The MNIST example/5.1 TensorFlow MNIST - Part 2 with comments.html  150 bytes
- 12. The MNIST example/7.1 TensorFlow MNIST - Part 3 with comments.html  150 bytes
- 12. The MNIST example/8.1 TensorFlow MNIST - Part 4 with comments.html  150 bytes
- 12. The MNIST example/9.1 TensorFlow MNIST - Part 5 with comments.html  150 bytes
- 13. Business case/4.3 TensorFlow Business Case - Preprocessing.html  149 bytes
- 4. Minimal example - your first machine learning algorithm/5.10 Minimal_example_Exercise_6_Solution.html  149 bytes
- 4. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_5_Solution.html  149 bytes
- 4. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_1_Solution.html  149 bytes
- 4. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_4_Solution.html  149 bytes
- 4. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_2_Solution.html  149 bytes
- 5. TensorFlow - An introduction/7.1 TensorFlow Minimal Example - Complete Code.html  149 bytes
- 14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html  148 bytes
- 5. TensorFlow - An introduction/4.1 TensorFlow Minimal Example - Part 1.html  146 bytes
- 5. TensorFlow - An introduction/5.1 TensorFlow Minimal Example - Part 2.html  146 bytes
- 5. TensorFlow - An introduction/6.1 TensorFlow Minimal Example - Part 3.html  146 bytes
- 4. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html  145 bytes
- 12. The MNIST example/11.1 TensorFlow MNIST - All Exercises.html  144 bytes
- 4. Minimal example - your first machine learning algorithm/5.5 Minimal_example_All_Exercises.html  143 bytes
- 12. The MNIST example/13.2 TensorFlow MNIST - Complete Code.html  139 bytes
- 4. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html  136 bytes
- 4. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html  136 bytes
- 4. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html  136 bytes
- 12. The MNIST example/5. Preprocess the data - scale the test data.html  81 bytes
- 12. The MNIST example/7. Preprocess the data - shuffle and batch the data.html  81 bytes
- 13. Business case/7. Load the preprocessed data - Exercise.html  79 bytes
- 0. Websites you may like/[FreeCourseWorld.Com].url  54 bytes
- [FreeCourseWorld.Com].url  54 bytes
- 0. Websites you may like/[DesireCourse.Net].url  51 bytes
- [DesireCourse.Net].url  51 bytes
- 0. Websites you may like/[CourseClub.Me].url  48 bytes
- [CourseClub.Me].url  48 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.